

**CONFIGURATION AND
PROGRAMMING MANUAL**

Software version: 1.0x

code: 80381 - 04-2015 - ENG

This document supplements the following manuals:

- Instructions and warnings for IR-12/IR-24

This document is the property of GEFTRAN and may not be reproduced or transferred to third parties without authorization.

ATTENTION!

This manual is an integral part of the product, and must always be available to operators.

This manual must always accompany the product, including if it is transferred to another user.

Installation and/or maintenance workers MUST read this manual and scrupulously follow all of the instructions in it and in its attachments. **GEFRAN** will not be liable for damage to persons and/or property, or to the product itself, if the following terms and conditions are disregarded.

The Customer is obligated to respect trade secrets. Therefore, this manual and its attachments may not be tampered with, changed, reproduced, or transferred to third parties without **GEFRAN**'s authorization.

TABLE OF CONTENTS AND SUMMARIES

TABLE OF CONTENTS AND SUMMARIES	3	OUTPUTS	11	
		ENABLING SSR OUTPUT CHANNELS	11	
INTRODUCTION.....	4	ASSIGNMENT OF DIGITAL OUTPUTS	11	
FIELD OF USE	4			
CHARACTERISTICS OF PERSONNEL.....	4			
STRUCTURE OF THIS MANUAL.....	5			
CONTROLLING THE DEVICE VIA SERIAL.....		6	CONTROLS	12
CONNECTION	6	COMPENSATION OF LINE VOLTAGE.....	14	
INPUTS		7	CONTROLLING POWER.....	15
LINE VOLTAGE VALUE	7	SSR COMMAND MODE.....	15	
DIGITAL INPUTS	8			
ALARMS		9	HW/SW INFORMATION.....	16
ALARM: THERMAL PROTECTION	9			
ALARMS FUSE_OPEN, SSR_SHORT and LOAD_OPEN	10			
		APPENDIX	17	

INTRODUCTION

The modular power controller described in this manual and shown on the cover is a separate unit for the independent control of 12/24 zones. It offers high applicative flexibility thanks to the extended configurability and programmability of its parameters.

Instrument configuration and programming must be performed with a PC connected in USB/RS232/RS485, with specific GF_eXpress application software.

Since it is impossible to foresee all of the installations and environments in which the instrument may be applied, adequate technical preparation and complete knowledge of the instrument's potentials are necessary.

 GEFRAN declines all liability if rules for correct installation, configuration, and/or programming are disregarded, as well as all liability for systems upline and/or downline of the instrument.

FIELD OF USE

The modular power controller is the ideal solution for applications in heat treatment furnaces, in thermoformers, in packaging and packing machines and, in general, in standard temperature control applications. Nevertheless, because it is highly programmable, the controller can also be used for other applications provided they are compatible with the instrument's technical data.

Although the instrument's flexibility allows it to be used in a variety of applications, the *field of use* must always conform to the limits specified in the technical data supplied.

 GEFRAN declines all liability for damage of any type deriving from installations, configurations, or programmings that are inappropriate, imprudent, or not conforming to the technical data supplied.

Prohibited use

It is absolutely prohibited:

- to utilize the instrument or parts of it (including software) for any use not conforming to that specified in the technical documentation supplied;
- to modify working parameters inaccessible to the operator, decrypt or transfer all or part of the software;
- to utilize the instrument in explosive atmospheres;
- to repair or convert the instrument using non-original replacement parts;
- to utilize the instrument or parts of it without having read and correctly understood the technical documentation supplied;
- to scrap or dispose of the instrument in normal dumps; components that are potentially harmful to the environment must be disposed of in conformity to the regulations of the country of installation.

CHARACTERISTICS OF PERSONNEL

This manual is intended for technical personnel, who commission the instrument by connecting it to other units, and for service and maintenance personnel.

It is assumed that such persons have adequate technical knowledge, especially in the fields of electronics and automation.

The instrument described in this manual may be operated only by personnel who are trained for their assigned task, in conformity to the instructions for such task and, specifically, to the safety warnings and precautions contained in such instructions. Thanks to their training and experience, qualified personnel can recognize the risks inherent to the use of these products/systems and are able to avoid possible dangers

It is forbidden to employ untrained personnel, persons with disabilities, legally disqualified persons, persons who are not sober, or persons who take drugs.

STRUCTURE OF THIS MANUAL

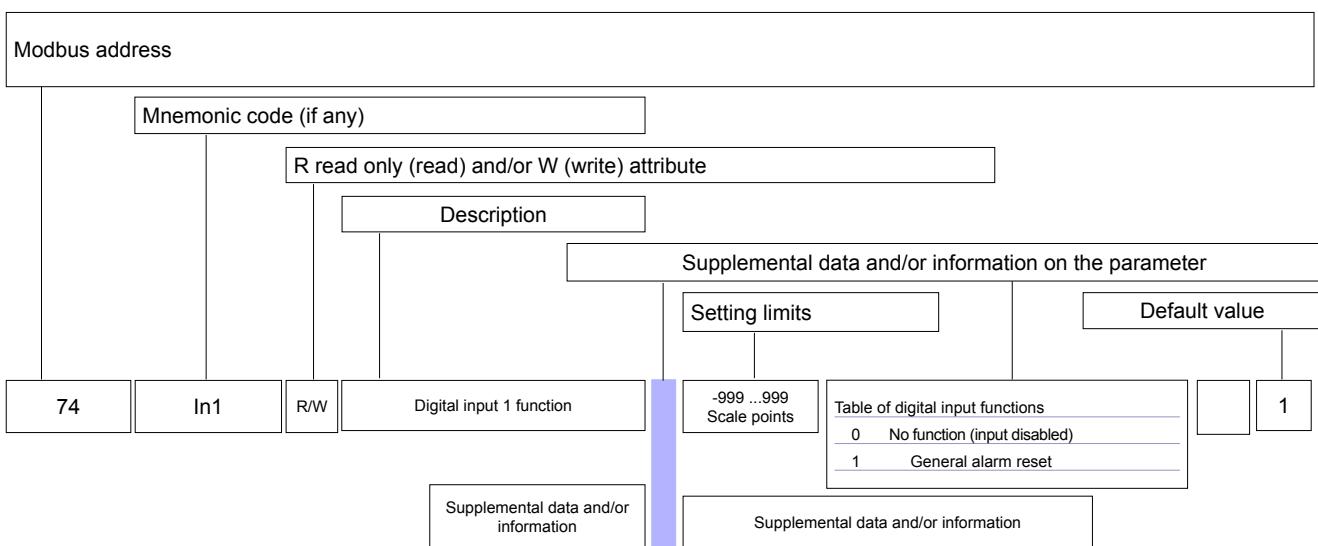
This manual was originally written in ITALIAN. Therefore, in case of inconsistencies or doubts, request the original manual or explanations from GEFRAN.

The instructions in this manual do not replace the safety instructions and the technical data for installation, configuration and programming applied directly to the product or the rules of common sense and safety regulations in effect in the country of installation.

For easier understanding of the controller's basic functions and its full potentials, the configuration and programming parameters are grouped according to function and are described in separate **chapters**.

Each **chapter** has from 1 to 3 sections:

- the first section presents a general description of the parameters described in detail in the following zones;


- the second section presents the parameters needed for the controller's **basic applications**, which users and/or installers can access clearly and easily, immediately finding the parameters necessary for quick use of the controller;

- the third section (ADVANCED SETTINGS) presents parameters for advanced use of the controller: this section is addressed to users and/or installers who want to use the controller in special applications or in applications requiring the high performance offered by the instrument.

Some sections may contain a functional diagram showing interaction among the parameters described;

- terms used on other pages of the manual (related or supplemental topics) are shown in underlined italics and listed in the index (linked to IT support).

In each section, the programming parameters are shown as follows:

Unless indicated otherwise, these parameters are in decimal format and represent 16 bit words.

CONTROLLING THE DEVICE VIA SERIAL

All of the setting parameters are saved in internal memory EEPROM (non-volatile), for which a maximum of 10,000 delete/write cycles is guaranteed. To prevent rapid memory deterioration, write only when necessary, with the exception of a few parameters whose memorization in EEPROM can be disabled by setting the Option parameter.

CONNECTION

Each device has an optically isolated serial port RS485 with standard Modbus protocol via connectors PORT 1 (SER.IN) and PORT 2 (SER.OUT), 9-pin tray type.

The Cod parameter (read only) shows the node address value, which can be set from 00 to 99 with the two rotary switches; the hexadecimal settings are reserved.

A parameter can be read or written by both communication ports (PORT 1 and PORT 2).

Changing the **Baud** parameters (baud rate selection), **Par** (parity selection) can cause a communication failure.

To set parameters bAu and Par, follow the Autobaud procedure described in the "Operating instructions and warnings" manual.

Installing the "MODBUS" serial network

A network typically has a Master object that "manages" communication by means of "commands" and Slaves that carry out these commands.

The IR-12/IR-24 modules are considered Slaves to the network master, which is usually a supervision terminal or a PLC.

The IR-12/IR-24 modules are preset as follows:

- node address = 0 (0 + 0) = Serial autobaud
- serial speed = 19200 bit/s
- serial parity = none

You can install a maximum of 99 IR-12/IR-24 modules in a serial network, with node address selectable from "01" to "99".

Settings

45	Baud	R/W	Select baud rate	Baud rate table		6														
				<table border="1"><tbody><tr><td>0</td><td>1200 bit/s</td></tr><tr><td>1</td><td>2400 bit/s</td></tr><tr><td>2</td><td>4800 bit/s</td></tr><tr><td>3</td><td>9600 bit/s</td></tr><tr><td>4</td><td>19200 bit/s</td></tr><tr><td>5</td><td>38400 bit/s</td></tr><tr><td>6</td><td>57600 bit/s</td></tr></tbody></table>	0	1200 bit/s	1	2400 bit/s	2	4800 bit/s	3	9600 bit/s	4	19200 bit/s	5	38400 bit/s	6	57600 bit/s		
0	1200 bit/s																			
1	2400 bit/s																			
2	4800 bit/s																			
3	9600 bit/s																			
4	19200 bit/s																			
5	38400 bit/s																			
6	57600 bit/s																			
47	Par	R/W	Select parity	Parity table		0														
				<table border="1"><tbody><tr><td>0</td><td>no parity</td></tr><tr><td>1</td><td>odd</td></tr><tr><td>2</td><td>even</td></tr></tbody></table>	0	no parity	1	odd	2	even										
0	no parity																			
1	odd																			
2	even																			

Reading status

46	Cod	R	Device identification code	1 ... 99	Value acquired by rotary switches (tens+units)
----	------------	---	----------------------------	----------	--

INPUTS

LINE VOLTAGE VALUE

The RMS voltage values of each phase are shown in parameters **Volt.Lp** (with p = phase from 1 to 3).

A voltage presence check is active for each phase; the check switches off the module if the voltage value is incorrect

The **S.General** parameter contains information on line voltage status, including network frequency

Reading status

24	Volt.L1	R	Voltmeter input value phase L1	
----	----------------	---	--------------------------------	--

25	Volt.L2	R	Voltmeter input value phase L2	
----	----------------	---	--------------------------------	--

26	Volt.L3	R	Voltmeter input value phase L3	
----	----------------	---	--------------------------------	--

30	S.General	R	General status	
----	------------------	---	----------------	--

General status table

bit	
0	Frequency: 0=50Hz, 1=60Hz
1	Line voltage off spec
2	Alarm minimum voltage phase L1
3	Alarm minimum voltage phase L2
4	Alarm minimum voltage phase L3
5	Alarm maximum voltage phase L1
6	Alarm maximum voltage phase L2
7	Alarm maximum voltage phase L3

31	S.Alarm	R	Alarms status	
----	----------------	---	---------------	--

Alarms status table

bit	
0	General alarm (OR all alarms)
1	
2	Alarm max. temp. exceeded heat sink 1
3	Alarm max. temp. exceeded heat sink 2
4	
5	
6	Warning first temp. threshold exceeded heat sink 1
7	Warning first temp. threshold exceeded heat sink 2
8	Alarm phase of synchronism L1
9	Alarm phase of synchronism L2
10	Alarm phase of synchronism L3
11	Alarm no 24V power supply digital outputs
12	Generic alarm digital output in short circuit
13	Generic alarm power channel interrupted (FUSE_OPEN)
14	Generic alarm load interrupted or disconnected (LOAD_OPEN)
15	Generic alarm solid status relay in short circuit (SSR_SHORT)

DIGITAL INPUTS

Four digital inputs are always present.

Each input can perform different functions based on the setting of the following parameters:

Settings

74	In.1	R/W	Digital input 1 function
75	In.2	R/W	Digital input 2 function
76	In.3	R/W	Digital input 3 function
77	In.4	R/W	Digital input 4 function

<i>Table of digital input functions</i>	
0	No function (input disabled)
1	General alarm reset
2	Enable/Disable loads of L1 phase
3	Enable / Disable loads of L2 phase
4	Enable / Disable loads of L3 phase
5	Enable / Disable ALL loads (L1,L2,L3 phases)
+32	for input in denied logic

	0
	0
	0
	0

Reading status

29	S.IO	R	Digital I/O states
----	-------------	---	--------------------

<i>Digital I/O states table</i>	
bit	
0	State input 1
1	State input 2
2	State input 3
3	State input 4
4	State output 1
5	State output 2
6	State output 3
7	State output 4

ALARMS

ALARM: thermal protection

Each IR-12/IR-24 module has two temperature sensors for the internal heat sinks. The temperature values are show in variables **Temp.1** and **Temp.2**. The overtemperature alarm shown in **S.Alarm** trips when at least one of the temperatures exceeds a set limit. This condition may be caused by obstructed ventilation slits or by stopped cooling fans. If the overtemperature alarm trips, the control disables the command outputs.

The general alarm (OR of all alarms) can be done by digital input function or by serial writing

78	STATUS11	R/W	Internal status	<i>Internal status table</i>
				bit
				0 General alarm reset

Reading status

27	Temp.1	R	Temperature of heatsink 1	
28	Temp.2	R	Temperature of heatsink 2	
31	S.Alarm	R	Alarms status	<i>Alarms status table</i>
				bit
				0 General alarm (OR all alarms)
				1
				2 Alarm max. temp. exceeded heat sink 1
				3 Alarm max. temp. exceeded heat sink 2
				4
				5
				6 Warning first temp. threshold exceeded heat sink 1
				7 Warning first temp. threshold exceeded heat sink 2
				8 Alarm phase of synchronism L1
				9 Alarm phase of synchronism L2
				10 Alarm phase of synchronism L3
				11 Alarm no 24V power supply digital outputs
				12 Generic alarm digital output in short circuit
				13 Generic alarm power channel interrupted (FUSE_OPEN)
				14 Generic alarm load interrupted or disconnected (LOAD_OPEN)
				15 Generic alarm solid status relay in short circuit (SSR_SHORT)

ALARMS FUSE_OPEN, SSR_SHORT and LOAD_OPEN

Diagnostics is active to check correct functioning of the process:

- FUSE_OPEN alarm: trips at opening of internal fuse
- LOAD_OPEN alarm: trips when load is interrupted or disconnected
- SSR_SHORT alarm: trips when the solid status relay is in short circuit

NOTE1 : In PA_mode, the diagnostic Alarms Load-Open and Fuse_open are detected for SCR power firing higher than 40%.

NOTE2: In PA_mode, the diagnostic Alarm SSR-SHORT is detected when SCR power firing is P=0% or when its channel is disabled.

The summary status of the alarms is shown in **S.Alarm** and the details for each output are shown in **S.Out.Lp.o** (with p = phase from 1 to 3, o = output from 1 to 8).

Reading status

80	S.Out.L1.1	R	Status of output 1 phase L1
81	S.Out.L1.2	R	Status of output 2 phase L1
82	S.Out.L1.3	R	Status of output 3 phase L1
83	S.Out.L1.4	R	Status of output 4 phase L1
84	S.Out.L1.5	R	Status of output 5 phase L1
85	S.Out.L1.6	R	Status of output 6 phase L1
86	S.Out.L1.7	R	Status of output 7 phase L1
87	S.Out.L1.8	R	Status of output 8 phase L1
88	S.Out.L2.1	R	Status of output 1 phase L2
89	S.Out.L2.2	R	Status of output 2 phase L2
90	S.Out.L2.3	R	Status of output 3 phase L2
91	S.Out.L2.4	R	Status of output 4 phase L2
92	S.Out.L2.5	R	Status of output 5 phase L2
93	S.Out.L2.6	R	Status of output 6 phase L2
94	S.Out.L2.7	R	Status of output 7 phase L2
95	S.Out.L2.8	R	Status of output 8 phase L2
96	S.Out.L3.1	R	Status of output 1 phase L3
97	S.Out.L3.2	R	Status of output 2 phase L3
98	S.Out.L3.3	R	Status of output 3 phase L3
99	S.Out.L3.4	R	Status of output 4 phase L3
100	S.Out.L3.5	R	Status of output 5 phase L3
101	S.Out.L3.6	R	Status of output 6 phase L3
102	S.Out.L3.7	R	Status of output 7 phase L3
103	S.Out.L3.8	R	Status of output 8 phase L3

Table of output states	
bit	
0	= 0: output OFF; = 1: output ON
1	= 0: proper compensation; = 1: output saturated (compensation is not correct)
2	
3	
4	Output state: power channel interrupted (fuse or solid state relay)
5	Output state: load interrupted or disconnected
6	Output state: solid state relay in short circuit

OUTPUTS

ENABLING SSR OUTPUT CHANNELS

The 24 output channels can be enabled by means of parameters **En.Lp** (with p = phase from 1 to 3). Enabling of the channels is saved in eeprom to maintain the last saved status at the next power-up.

This saving can be disabled by means of the **Option** parameter.

Settings

32	En.L1	R/W	Output channels enabling phase L1
33	En.L2	R/W	Output channels enabling phase L2
34	En.L3	R/W	Output channels enabling phase L3

<i>Output channels enabling table</i>			255
bit			
0	Enable channel 1 (0 = off, 1 = on)		255
1	Enable channel 2 (0 = off, 1 = on)		
2	Enable channel 3 (0 = off, 1 = on)		
3	Enable channel 4 (0 = off, 1 = on)		
4	Enable channel 5 (0 = off, 1 = on)		
5	Enable channel 6 (0 = off, 1 = on)		
6	Enable channel 7 (0 = off, 1 = on)		
7	Enable channel 8 (0 = off, 1 = on)		

43	Option	R/W	Device options
----	---------------	-----	----------------

<i>Device options table</i>			42
bit			
1	Disables saving of parameters En.Lp in eeprom (with p = phase from 1 to 3)		
3	Disables saving of parameters M.P.Lp.o in eeprom (with p = phase from 1 to 3, o = output from 1 to 8)		
5	Disables compensation of line voltage		

ASSIGNMENT OF DIGITAL OUTPUTS

The power controller has four digital outputs that can be configured with the following parameters:

Settings

125	Out.1	R/W	Digital outputs assignment OUT 1
126	Out.2	R/W	Digital outputs assignment OUT 2
127	Out.3	R/W	Digital outputs assignment OUT 3
128	Out.4	R/W	Digital outputs assignment OUT 4

<i>Digital outputs assignment table</i>			0
0	Digital output disabled		
1	Hardware drive OK		0
3	Loads consent		0
4	Alarm present		
+32	to invert the output status		0

Reading status

29	S.IO	R	Digital I/O states
----	-------------	---	--------------------

<i>Digital I/O states table</i>	
bit	
0	Input state 1
1	Input state 2
2	Input state 3
3	Input state 4
4	Output state 1
5	Output state 2
6	Output state 3
7	Output state 4

CONTROLS

In manual power control mode you can drive the outputs with a settable power percentage defined by:

M.P.Lp.o (with p = phase from 1 to 3, o = output from 1 to 8).

You can disable the saving of these parameters in EEPROM by means of the **Option** parameter (for example, in case of repeated changes by a PLC).

A softstart ramp can be configured when each channel is switched on. Ramp length is defined by **M.Ramp.tm**.

Settings

43	Option	R/W	Device options	Bit	<i>Device options table</i>		42
				1	Disables saving of parameters En.Lp in eeprom (with p = phase from 1 to 3)		
				3	Disables saving of parameters M.P.Lp.o in eeprom (with p = phase from 1 to 3)		
				5	Disables compensation of line voltage		
44	M.Ramp.tm	R/W	Length of softstart ramp in manual mode		0.0...25.5s		0,0
130	M.P.L1.1	R/W	Manual power of output 1 phase L1		0...100%		0
131	M.P.L1.2	R/W	Manual power of output 2 phase L1		0...100%		0
132	M.P.L1.3	R/W	Manual power of output 3 phase L1		0...100%		0
133	M.P.L1.4	R/W	Manual power of output 4 phase L1		0...100%		0
134	M.P.L1.5	R/W	Manual power of output 5 phase L1		0...100%		0
135	M.P.L1.6	R/W	Manual power of output 6 phase L1		0...100%		0
136	M.P.L1.7	R/W	Manual power of output 7 phase L1		0...100%		0
137	M.P.L1.8	R/W	Manual power of output 8 phase L1		0...100%		0
138	M.P.L2.1	R/W	Manual power of output 1 phase L2		0...100%		0
139	M.P.L2.2	R/W	Manual power of output 2 phase L2		0...100%		0
140	M.P.L2.3	R/W	Manual power of output 3 phase L2		0...100%		0
141	M.P.L2.4	R/W	Manual power of output 4 phase L2		0...100%		0
142	M.P.L2.5	R/W	Manual power of output 5 phase L2		0...100%		0
143	M.P.L2.6	R/W	Manual power of output 6 phase L2		0...100%		0
144	M.P.L2.7	R/W	Manual power of output 7 phase L2		0...100%		0
145	M.P.L2.8	R/W	Manual power of output 8 phase L2		0...100%		0
146	M.P.L3.1	R/W	Manual power of output 1 phase L3		0...100%		0
147	M.P.L3.2	R/W	Manual power of output 2 phase L3		0...100%		0
148	M.P.L3.3	R/W	Manual power of output 3 phase L3		0...100%		0
149	M.P.L3.4	R/W	Manual power of output 4 phase L3		0...100%		0
150	M.P.L3.5	R/W	Manual power of output 5 phase L3		0...100%		0
151	M.P.L3.6	R/W	Manual power of output 6 phase L3		0...100%		0
152	M.P.L3.7	R/W	Manual power of output 7 phase L3		0...100%		0
153	M.P.L3.8	R/W	Manual power of output 8 phase L3		0...100%		0

Reading status

0	Out.P.L1.1	R	Percentage of modulation of output 1 phase L1
1	Out.P.L1.2	R	Percentage of modulation of output 2 phase L1
2	Out.P.L1.3	R	Percentage of modulation of output 3 phase L1
3	Out.P.L1.4	R	Percentage of modulation of output 4 phase L1
4	Out.P.L1.5	R	Percentage of modulation of output 5 phase L1
5	Out.P.L1.6	R	Percentage of modulation of output 6 phase L1
6	Out.P.L1.7	R	Percentage of modulation of output 7 phase L1
7	Out.P.L1.8	R	Percentage of modulation of output 8 phase L1
8	Out.P.L2.1	R	Percentage of modulation of output 1 phase L2
9	Out.P.L2.2	R	Percentage of modulation of output 2 phase L2
10	Out.P.L2.3	R	Percentage of modulation of output 3 phase L2
11	Out.P.L2.4	R	Percentage of modulation of output 4 phase L2
12	Out.P.L2.5	R	Percentage of modulation of output 5 phase L2
13	Out.P.L2.6	R	Percentage of modulation of output 6 phase L2
14	Out.P.L2.7	R	Percentage of modulation of output 7 phase L2
15	Out.P.L2.8	R	Percentage of modulation of output 8 phase L2
16	Out.P.L3.1	R	Percentage of modulation of output 1 phase L3
17	Out.P.L3.2	R	Percentage of modulation of output 2 phase L3
18	Out.P.L3.3	R	Percentage of modulation of output 3 phase L3
19	Out.P.L3.4	R	Percentage of modulation of output 4 phase L3
20	Out.P.L3.5	R	Percentage of modulation of output 5 phase L3
21	Out.P.L3.6	R	Percentage of modulation of output 6 phase L3
22	Out.P.L3.7	R	Percentage of modulation of output 7 phase L3
23	Out.P.L3.8	R	Percentage of modulation of output 8 phase L3

50	Pw.L1.1	R	Power setpoint % of output 1 phase L1
51	Pw.L1.2	R	Power setpoint % of output 2 phase L1
52	Pw.L1.3	R	Power setpoint % of output 3 phase L1
53	Pw.L1.4	R	Power setpoint % of output 4 phase L1
54	Pw.L1.5	R	Power setpoint % of output 5 phase L1
55	Pw.L1.6	R	Power setpoint % of output 6 phase L1
56	Pw.L1.7	R	Power setpoint % of output 7 phase L1
57	Pw.L1.8	R	Power setpoint % of output 8 phase L1
58	Pw.L2.1	R	Power setpoint % of output 1 phase L2
59	Pw.L2.2	R	Power setpoint % of output 2 phase L2
60	Pw.L2.3	R	Power setpoint % of output 3 phase L2
61	Pw.L2.4	R	Power setpoint % of output 4 phase L2
62	Pw.L2.5	R	Power setpoint % of output 5 phase L2
63	Pw.L2.6	R	Power setpoint % of output 6 phase L2
64	Pw.L2.7	R	Power setpoint % of output 7 phase L2
65	Pw.L2.8	R	Power setpoint % of output 8 phase L2
66	Pw.L3.1	R	Power setpoint % of output 1 phase L3
67	Pw.L3.2	R	Power setpoint % of output 2 phase L3
68	Pw.L3.3	R	Power setpoint % of output 3 phase L3
69	Pw.L3.4	R	Power setpoint % of output 4 phase L3
70	Pw.L3.5	R	Power setpoint % of output 5 phase L3
71	Pw.L3.6	R	Power setpoint % of output 6 phase L3
72	Pw.L3.7	R	Power setpoint % of output 7 phase L3
73	Pw.L3.8	R	Power setpoint % of output 8 phase L3

COMPENSATION OF LINE VOLTAGE

This function lets you correct supplied power based on reference line voltage **Volt.Nom.Lp** (with p = phase from 1 to 3). The function can be activated / deactivated with the **Option** parameter. Correct compensation status is shown in the status of each **S.Out.Lp.o** (with p = phase from 1 to 3, o = output from 1 to 8).

Settings

37	Volt.Nom.L1	R/W	Rated voltage phase L1
38	Volt.Nom.L2	R/W	Rated voltage phase L2
39	Volt.Nom.L3	R/W	Rated voltage phase L3
43	Option	R/W	Device options

0.0...270.0V		230.0
0.0...270.0V		230.0
0.0...270.0V		230.0
Bit	<i>Device options table</i>	42
1	Disables saving of parameters En.Lp in eeprom (with p = phase from 1 to 3)	
3	Disables saving of parameters M.P.Lp.o in eeprom (with p = phase from 1 to 3, o = output from 1 to 8)	
5	Disables compensation of line voltage	

80	S.Out.L1.1	R	Status of output 1 phase L1
81	S.Out.L1.2	R	Status of output 2 phase L1
82	S.Out.L1.3	R	Status of output 3 phase L1
83	S.Out.L1.4	R	Status of output 4 phase L1
84	S.Out.L1.5	R	Status of output 5 phase L1
85	S.Out.L1.6	R	Status of output 6 phase L1
86	S.Out.L1.7	R	Status of output 7 phase L1
87	S.Out.L1.8	R	Status of output 8 phase L1
88	S.Out.L2.1	R	Status of output 1 phase L2
89	S.Out.L2.2	R	Status of output 2 phase L2
90	S.Out.L2.3	R	Status of output 3 phase L2
91	S.Out.L2.4	R	Status of output 4 phase L2
92	S.Out.L2.5	R	Status of output 5 phase L2
93	S.Out.L2.6	R	Status of output 6 phase L2
94	S.Out.L2.7	R	Status of output 7 phase L2
95	S.Out.L2.8	R	Status of output 8 phase L2
96	S.Out.L3.1	R	Status of output 1 phase L3
97	S.Out.L3.2	R	Status of output 2 phase L3
98	S.Out.L3.3	R	Status of output 3 phase L3
99	S.Out.L3.4	R	Status of output 4 phase L3
100	S.Out.L3.5	R	Status of output 5 phase L3
101	S.Out.L3.6	R	Status of output 6 phase L3
102	S.Out.L3.7	R	Status of output 7 phase L3
103	S.Out.L3.8	R	Status of output 8 phase L3

<i>Table of output states</i>	
bit	
0	= 0: output OFF; = 1: output ON
1	= 0: correct compensation; = 1: output saturated (compensation is not correct)
2	
3	
4	Status output: channel power interrupted (fuse or relay)
5	Status output: load interrupted or disconnected
6	Output State: SSR short-circuit

CONTROLLING POWER

SSR COMMAND MODE

The following power control modes are settable with the **Firing.t** parameter:

- **Optimized BF:**

modulation by means of changing the number of conduction cycles with zero crossing firing at each full wave with optimum distribution of active channels (refresh time equals 100 half waves: 2.00 s at 50Hz, 1.66 s at 60Hz) to minimize current draw peaks

- **BF** modulation by means of changing the number of conduction cycles with zero crossing firing at full wave

- **HSC** modulation by means of changing the number of conduction cycles with zero crossing firing at half wave

BF burst firing: this mode controls power on the load by means of a series of conduction cycles (ON) and non conduction cycles (OFF). The ratio of the number of ON cycle to the number of OFF cycles is proportional to the value of power to be supplied to the load. The period of repetition or cycle time is kept to a minimum for each power value.

The **BF.Cycles** parameter defines the minimum number of conduction cycles, settable from 1 to 20

HSC Half Single Cycle: this mode corresponds to a BF that includes half cycles of ON and OFF.

Used to reduce the flicker loads with short-wave infrared.

Settings

41	Firing.t	R/W	Firing type		<i>Firing type table</i>		0								
					<table border="1"><tr><td>0</td><td>Optimized Burst Firing</td></tr><tr><td>1</td><td>Burst Firing</td></tr><tr><td>2</td><td>Half Single Cycle</td></tr><tr><td>4</td><td>Phase Angle</td></tr></table>	0	Optimized Burst Firing	1	Burst Firing	2	Half Single Cycle	4	Phase Angle		
0	Optimized Burst Firing														
1	Burst Firing														
2	Half Single Cycle														
4	Phase Angle														
35	BF.Cycles	R/W	Minimum number of cycles of BF mode		1...20		0								

LOAD TYPE

Load type can be set with the **Load.t** parameter

Settings

42	Load.t	R/W	Load type		<i>Load type table</i>		0				
					<table border="1"><tr><td>0</td><td>Infrared lamps</td></tr><tr><td>1</td><td>Resistances</td></tr></table>	0	Infrared lamps	1	Resistances		
0	Infrared lamps										
1	Resistances										

HW/SW INFORMATION

You can identify the HW/SW on the controller and check their operation by means of the following information registers

122	Upd	R	Software version code		
120	mtmID	R	Manufact - Trade Mark (Gefran)	Manufacturer's name	5000
121	deviceID	R	Device ID (IR-12/IR-24 module)	Device product	215
48	Model	R	Hardware configuration code	<i>Table of hardware configuration codes</i>	
				bit	
				0	= 0: 12 channels = 1: 24 channels
30	S.General	R	General status	<i>General status table</i>	
				bit	
				0	Frequency: 0=50Hz, 1=60Hz
				1	Line voltage off spec.
				2	Alarm minimum voltage phase L1
				3	Alarm minimum voltage phase L2
				4	Alarm minimum voltage phase L3
				5	Alarm maximum voltage phase L1
				6	Alarm maximum voltage phase L2
				7	Alarm maximum voltage phase L3
31	S.Alarm	R	Alarms status	<i>Alarms status table</i>	
				bit	
				0	General alarm (OR all alarms)
				1	
				2	Alarm max. temp. exceeded heat sink 1
				3	Alarm max. temp. exceeded heat sink 2
				4	
				5	
				6	Warning first temp. threshold exceeded heat sink 1
				7	Warning first temp. threshold exceeded heat sink 2
				8	Alarm phase of synchronism L1
				9	Alarm phase of synchronism L2
				10	Alarm phase of synchronism L3
				11	Alarm no 24V power supply digital outputs
				12	Generic alarm digital output in short circuit
				13	Generic alarm power channel interrupted (FUSE_OPEN)
				14	Generic alarm load interrupted or disconnected (LOAD_OPEN)
				15	Generic alarm solid status relay in short circuit (SSR_SHORT)
29	S.IO	R	Digital I/O states	<i>Digital I/O states table</i>	
				bit	
				0	Input State 1
				1	Input State 2
				2	Input State 3
				3	Input State 4
				4	Output State 1
				5	Output State 2
				6	Output State 3
				7	Output State 4

APPENDIX

PARAMETERS

Parameter definition				Notes	Assigned value
CONTROLLING THE DEVICE VIA SERIAL					
45	Baud	R/W	Select baud rate		
47	Par	R/W	Select parity		
46	Cod	R	Device identification code	Value acquired by rotary switches (tens+units)	
LINE VOLTAGE VALUE					
24	Volt.L1	R	Voltmeter input value phase L1		
25	Volt.L2	R	Voltmeter input value phase L2		
26	Volt.L3	R	Voltmeter input value phase L3		
30	S.General	R	General status		
31	S.Alarm	R	Alarms status		
DIGITAL INPUTS					
74	In.1	R/W	Digital input 1 function		
75	In.2	R/W	Digital input 2 function		
76	In.3	R/W	Digital input 3 function		
77	In.4	R/W	Digital input 4 function		
29	S.IO	R	Digital I/O states		
ALARM: THERMAL PROTECTION					
27	Temp.1	R	Temperature of heatsink 1		
28	Temp.2	R	Temperature of heatsink 2		
31	S.Alarm	R	Alarms status		

ALARM: FUSE_OPEN, SSR_SHORT and LOAD_OPEN

31	S.Alarm	R	Alarms status
80	S.Out.L1.1	R	Status of output 1 phase L1
81	S.Out.L1.2	R	Status of output 2 phase L1
82	S.Out.L1.3	R	Status of output 3 phase L1
83	S.Out.L1.4	R	Status of output 4 phase L1
84	S.Out.L1.5	R	Status of output 5 phase L1
85	S.Out.L1.6	R	Status of output 6 phase L1
86	S.Out.L1.7	R	Status of output 7 phase L1
87	S.Out.L1.8	R	Status of output 8 phase L1
88	S.Out.L2.1	R	Status of output 1 phase L2
89	S.Out.L2.2	R	Status of output 2 phase L2
90	S.Out.L2.3	R	Status of output 3 phase L2
91	S.Out.L2.4	R	Status of output 4 phase L2
92	S.Out.L2.5	R	Status of output 5 phase L2
93	S.Out.L2.6	R	Status of output 6 phase L2
94	S.Out.L2.7	R	Status of output 7 phase L2
95	S.Out.L2.8	R	Status of output 8 phase L2
96	S.Out.L3.1	R	Status of output 1 phase L3
97	S.Out.L3.2	R	Status of output 2 phase L3
98	S.Out.L3.3	R	Status of output 3 phase L3
99	S.Out.L3.4	R	Status of output 4 phase L3
100	S.Out.L3.5	R	Status of output 5 phase L3
101	S.Out.L3.6	R	Status of output 6 phase L3
102	S.Out.L3.7	R	Status of output 7 phase L3
103	S.Out.L3.8	R	Status of output 8 phase L3

ENABLING SSR OUTPUT CHANNELS

32	En.L1	R/W	Enabling output channels phase L1		
33	En.L2	R/W	Enabling output channels phase L2		
34	En.L3	R/W	Enabling output channels phase L3		
43	Option	R/W	Device option		

ASSIGNMENT OF DIGITAL OUTPUTS

125	Out.1	R/W	Assignment digital output OUT 1		
126	Out.2	R/W	Assignment digital output OUT 2		
127	Out.3	R/W	Assignment digital output OUT 3		
128	Out.4	R/W	Assignment digital output OUT 4		
29	S.IO	R	Digital I/O states		

CONTROL

43	Option	R/W	Device option		
44	M.Ramp.tm	R/W	Length of softstart ramp in manual mode		
130	M.P.L1.1	R/W	Manual power of output 1 phase L1		
131	M.P.L1.2	R/W	Manual power of output 2 phase L1		
132	M.P.L1.3	R/W	Manual power of output 3 phase L1		
133	M.P.L1.4	R/W	Manual power of output 4 phase L1		
134	M.P.L1.5	R/W	Manual power of output 5 phase L1		
135	M.P.L1.6	R/W	Manual power of output 6 phase L1		
136	M.P.L1.7	R/W	Manual power of output 7 phase L1		
137	M.P.L1.8	R/W	Manual power of output 8 phase L1		
138	M.P.L2.1	R/W	Manual power of output 1 phase L2		
139	M.P.L2.2	R/W	Manual power of output 2 phase L2		
140	M.P.L2.3	R/W	Manual power of output 3 phase L2		
141	M.P.L2.4	R/W	Manual power of output 4 phase L2		
142	M.P.L2.5	R/W	Manual power of output 5 phase L2		
143	M.P.L2.6	R/W	Manual power of output 6 phase L2		
144	M.P.L2.7	R/W	Manual power of output 7 phase L2		
145	M.P.L2.8	R/W	Manual power of output 8 phase L2		
146	M.P.L3.1	R/W	Manual power of output 1 phase L3		
147	M.P.L3.2	R/W	Manual power of output 2 phase L3		
148	M.P.L3.3	R/W	Manual power of output 3 phase L3		
149	M.P.L3.4	R/W	Manual power of output 4 phase L3		

150	M.P.L3.5	R/W	Manual power of output 5 phase L3		
151	M.P.L3.6	R/W	Manual power of output 6 phase L3		
152	M.P.L3.7	R/W	Manual power of output 7 phase L3		
153	M.P.L3.8	R/W	Manual power of output 8 phase L3		

COMPENSATION OF LINE VOLTAGE

37	Volt.Nom.L1	R/W	Rated voltage phase L1		
38	Volt.Nom.L2	R/W	Rated voltage phase L2		
39	Volt.Nom.L3	R/W	Rated voltage phase L3		
43	Option	R/W	Device option		
80	S.Out.L1.1	R	Status of output 1 phase L1		
81	S.Out.L1.2	R	Status of output 2 phase L1		
82	S.Out.L1.3	R	Status of output 3 phase L1		
83	S.Out.L1.4	R	Status of output 4 phase L1		
84	S.Out.L1.5	R	Status of output 5 phase L1		
85	S.Out.L1.6	R	Status of output 6 phase L1		
86	S.Out.L1.7	R	Status of output 7 phase L1		
87	S.Out.L1.8	R	Status of output 8 phase L1		
88	S.Out.L2.1	R	Status of output 1 phase L2		
89	S.Out.L2.2	R	Status of output 2 phase L2		
90	S.Out.L2.3	R	Status of output 3 phase L2		
91	S.Out.L2.4	R	Status of output 4 phase L2		
92	S.Out.L2.5	R	Status of output 5 phase L2		
93	S.Out.L2.6	R	Status of output 6 phase L2		
94	S.Out.L2.7	R	Status of output 7 phase L2		
95	S.Out.L2.8	R	Status of output 8 phase L2		
96	S.Out.L3.1	R	Status of output 1 phase L3		
97	S.Out.L3.2	R	Status of output 2 phase L3		
98	S.Out.L3.3	R	Status of output 3 phase L3		
99	S.Out.L3.4	R	Status of output 4 phase L3		

100	S.Out.L3.5	R	Status of output 5 phase L3	
101	S.Out.L3.6	R	Status of output 6 phase L3	
102	S.Out.L3.7	R	Status of output 7 phase L3	
103	S.Out.L3.8	R	Status of output 8 phase L3	

SSR COMMAND MODE

41	Firing.t	R/W	Trigger type		
35	BF.Cycles	R/W	Minimum number of cycles of BF mode		

LOAD TYPE

42	Load.t	R/W	Load type		
----	---------------	-----	-----------	--	--

HW/SW INFORMATION

122	Upd	R	Software version code	
120	mtmID	R	Manufact - Trade Mark (Gefran)	
121	deviceID	R	Device ID (IR-12/IR-24 Module)	
48	Model	R	Hardware configuration code	
30	S.General	R	General status	
31	S.Alarm	R	Alarms status	
29	S.IO	R	Digital I/O states	

GEFRAN

GEFRAN spa

via Sebina, 74 - 25050 Provaglio d'Iseo (BS) Italy
Tel. +39 0309888.1 - Fax +39 0309839063
info@gefran.com - <http://www.gefran.com>