

**GEFRAN****CANopen GSH-A****Digital output****Single version  
Redundant version**

Cod. 80782 Edit.09/2023 - ENG

**SUMMARY**

|                                                     |    |
|-----------------------------------------------------|----|
| 1. SAFETY INSTRUCTIONS.....                         | 2  |
| 2. INTRODUCTION.....                                | 4  |
| 3. ELECTRICAL CONNECTIONS.....                      | 5  |
| 4. NETWORK MANAGEMENT (NMT).....                    | 7  |
| 5. BAUD RATE.....                                   | 8  |
| 6. NODE-ID .....                                    | 8  |
| 7. PARAMETER SETTING.....                           | 8  |
| 8. HEARTBEAT .....                                  | 8  |
| 9. ERROR HANDLING.....                              | 9  |
| 10. SDO COMMUNICATION AND READ/WRITE COMMANDS ..... | 9  |
| 11. PDO COMMUNICATION.....                          | 10 |
| 12. CANOPEN FEATURES SUMMARY.....                   | 14 |
| 13. COMMUNICATION EXAMPLES .....                    | 17 |

## 1. SAFETY INSTRUCTIONS

Total failure or malfunction of the sensor can cause danger or injury to the operator or damage to the machinery or equipment. It is recommended that additional safety measures should be incorporated into the system.

Any alteration, reconstruction or extension of the sensor is not allowed.

Sensor must be operated only within values specified in the datasheet.

Connection to power supply must be performed in accordance with safety instructions for electrical facilities and performed only by trained staff.

Disregard of this advice can lead to malfunctions, damage to property or personal injury and releases the manufacturer from product liability.

### **Do not open sensor**

Release of spring under tension can result in injury!

### **Do not snap cable**

Uncontrolled cable retraction can break off cable fixing. Broken fixing and cable can result in injury.  
Also sensor will be damaged!



### **Do not travel over range**

Uncontrolled cable retraction can result in injury. Also sensor will be damaged!

### **Special attention during mounting and operation of metal cable sensors**

Risk of injury by the measuring cable!

### **Sensors without cover / housing (OEM sensors)**

Risk of injury by moving parts. Mounting and operation of the sensor requires appropriate safety equipment that excludes any risk of personal injury!

### **Do not exceed maximum operating voltage listed in the catalog**

Risk of injury. Sensor will be damaged!

Before connecting the sensor to the CANbus the devices have to be checked for correct bitrate and unique node-IDs.

After power-on the sensor will enter pre-operational state and send a boot-up message indicating that it is ready for configuration by Service Data Objects. Parameters configured by the user can be stored nonvolatile by SAVE command.

On receiving “NMT-Node-Start”, the sensor transits to operational state and starts process data transmission.

When “Auto-Start” is configured the sensor will automatically transit to operational after boot-up without a need for the Node-Start message. Node monitoring is supported by Heartbeat protocol. The Heartbeat protocol provides automatic transmission of the node status (heartbeat message) by the slave within producer heartbeat time window





Do not damage cable!

Cable must not be oiled or lubricated!

Do not snap cable!

Do not travel over range!

Do not crack cable!

Cable travel should be axial to the cable outlet (no misalignment allowed!)

Do not drag cable along objects!

#### **Precautions:**

##### **Do not let snap the cable**

Uncontrolled retraction of cable may damage sensor.

No warranty will be granted for snapped cables.



##### **Mounting hints for unfavorable conditions**

If possible, fasten cable fixing with cable in retracted position.

For example, fit a mounting loop (see diagram) and put it around your wrist.

Do not remove the mounting loop before the cable is fastened.

The cable clip may be opened for easy attachment.

#### **Mounting**

To ensure proper operation, install the sensor only as described in this manual.

## 2. INTRODUCTION

The purpose of GSH-A sensor is to transform a linear position and an angular position into an electric signal. It is composed of two parts: the first transduces the linear position and the second one transduces the angular position.

Linear motion of the measuring cable (flexible stainless steel) is converted into rotation by means of a precision cable drum. A spring motor provides torque for the cable retraction. Special design assures precise and reproducible winding of the measuring cable. Cable extraction or retraction is transformed into an electrical signal.

The sensor is based on state-of-the-art contactless angle sensor (in HALL technology) implementing the functions of a CAN-BUS network slave device conforming to standard CANOpen protocol proposed by C.i.A. (Can in Automation) and described in the document entitled "CANOpen Application Layer and Communication Profile DS 301 v. 4.2" and in other documents mentioned below. Other reference documents used are C.i.A. DS-406 Device Profile for Encoders and C.i.A. DSP-305 Layer Setting Services and Protocol V1.1.1.

Angular position is determined by an inclination sensor with CANopen interface that enables angle levelling in many applications. The sensor is based on state-of-the-art MEMS capacitive technology implementing the functions of a CAN BUS network slave device conforming to standard CANopen protocol proposed by C.i.A. (Can in Automation) and described in the document entitled "CANOpen Application Layer and Communication Profile DS 301 v. 4.2" and in other documents mentioned below. Other reference documents used are C.i.A. DS-410 Device Profile for Inclinometers V3.1 (not completely implemented) and C.i.A. DSP-305 Layer Setting Services and Protocol V1.1.1

This document describes the standard CANOpen implementations created. It is addressed to CANOpen network system integrators and to CANOpen device designers who already know the content of the above-mentioned standards defined by C.i.A..

### ***Definition and Shortening***

**CAN:** Controller Area Network.

Describes a serial communication bus that implements the "physical" level 1 and the "data link" level 2 of the ISO/OSI reference model.

**CAL:** CAN Application Layer.

Describes implementation of the CAN in the level 7 "application" of the ISO/OSI reference model from which CANOpen derives.

**CMS:** CAN Message Specification.

CAL service element. Defines the CAN Application Layer for the various industrial applications.

**COB:** Communication Object.

Unit of transport of data in a CAN network (a CAN message). A maximum of 2048 COBs may be present in a CAN network, each of which may transport from 0 to a maximum of 8 bytes.

**COB-ID:** COB Identifier.

Identifying element of a CAN message. The identifier determines the priority of a COB in case of multiple messages in the network.

**D1 - D8:** Data from 1 to 8.

Number of bytes in the data field of a CAN message.

**DLC:** Data Length code.

Number of data bytes transmitted in a single frame.

**ISO:** International Standard Organization.

International authority providing standards for various merchandise sectors.

**NMT:** Network Management.

CAL service element. Describes how to configure, initialize, manage errors in a CAN network.

**PDO:** Process Data Object.

Process data communication objects (with high priority).

**RXSDO:** Receive SDO.

SDO objects received from the remote device.

**SDO:** Service Data Object.

Service data communication objects (with low priority). The value of this data is contained in the “Objects Dictionary” of each device in the CAN network.

**TXPDO:** Transmit PDO.

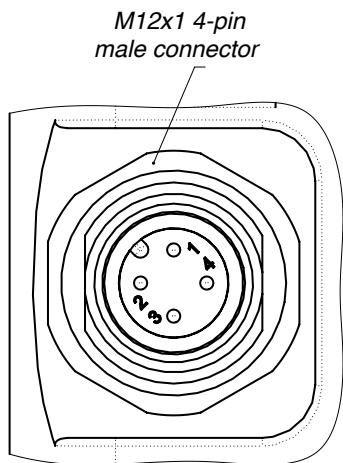
PDO objects transmitted by the remote device.

**TXSDO:** Transmit SDO.

SDO objects transmitted by the remote device.

**Note:** The numbers followed by the suffix “h” or with the prefix “0x” represent a hexadecimal value, with suffix “b” a binary value, and with suffix “d” a decimal value. The value is decimal unless specified otherwise.

### 3. ELECTRICAL CONNECTIONS


For the connections refer to following images:

**SINGLE VERSION**

**M-1-S**

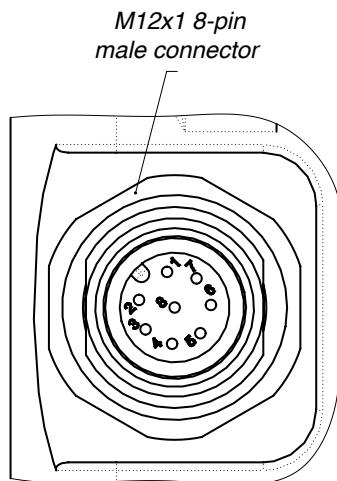
**REDUNDANT VERSION**

**M-1-R/ M-2-R**

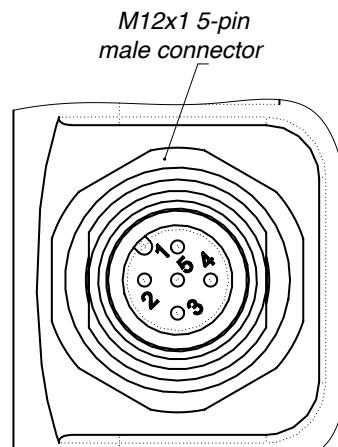
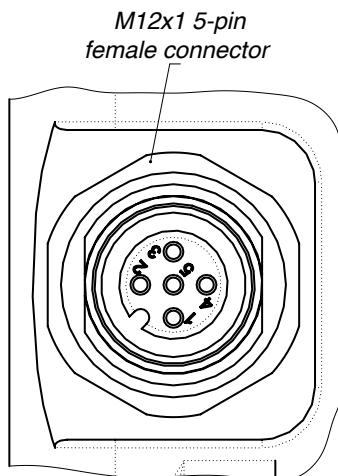


| CONNECTIONS |         |
|-------------|---------|
| 1           | +SUPPLY |
| 2           | GROUND  |
| 3           | CANH    |
| 4           | CANL    |

**SINGLE VERSION**


**REDUNDANT VERSION**

**N-1-S**



**N-1-R/ N-2-R**



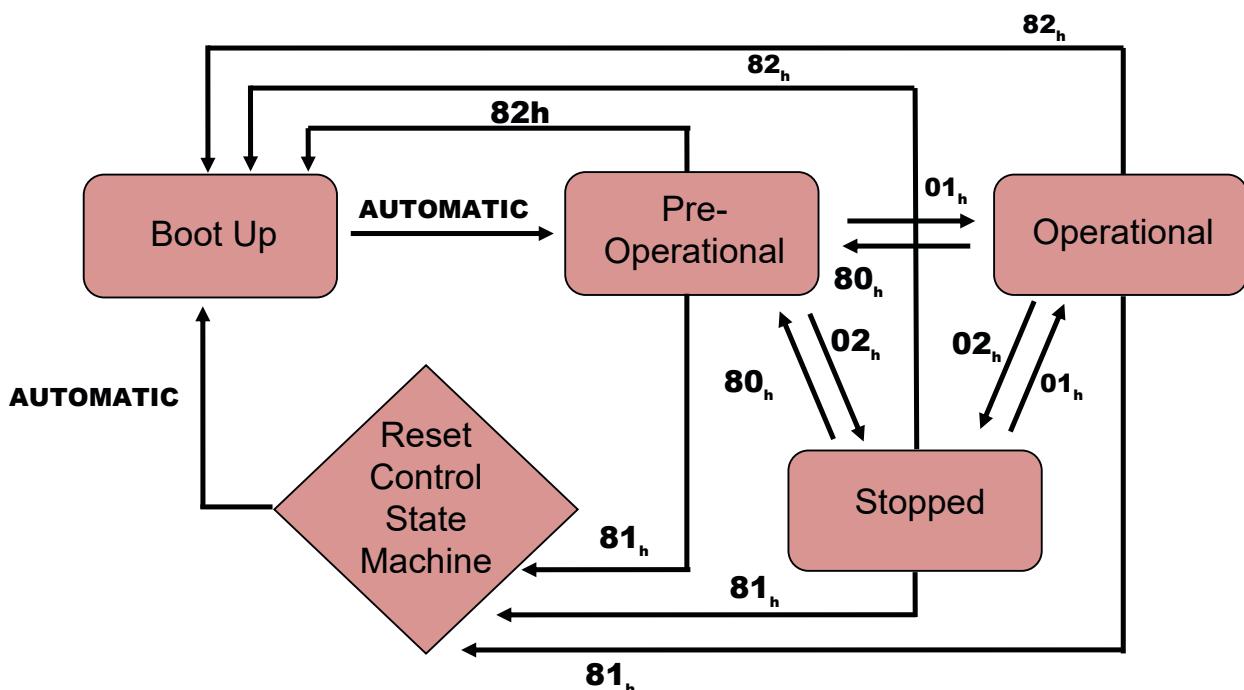
| CONNECTIONS |         |
|-------------|---------|
| 1           | n.c.    |
| 2           | +SUPPLY |
| 3           | GROUND  |
| 4           | CANH    |
| 5           | CANL    |

**REDUNDANT VERSION****O-1-R**

| CONNECTIONS |           |
|-------------|-----------|
| 1           | +SUPPLY 1 |
| 2           | GROUND 1  |
| 3           | CANH 1    |
| 4           | CANL 1    |
| 5           | +SUPPLY 2 |
| 6           | GROUND 2  |
| 7           | CANH 2    |
| 8           | CANL 2    |

**SINGLE/REDUNDANT IN-OUT VERSION****N-3-(S/R)**

| CONNECTIONS |         |
|-------------|---------|
| 1           | GROUND  |
| 2           | +SUPPLY |
| 3           | GROUND  |
| 4           | CANH    |
| 5           | CANL    |


**Note:** please make sure that the CANbus is terminated.

The impedance measured between CAN H and CAN L must be 60 ohm that means the cable must be connected to a 120 ohm resistor on each ends of the bus line. Internally the transducer is not terminated with the resistor of 120 ohm.

Do not confuse the signal lines of the CAN bus, otherwise communication with the transducer is impossible.

## 4. NETWORK MANAGEMENT (NMT)

The device supports CanOpen network management functionality NMT Slave (Minimum Boot Up).



Every CanOpen device contains an internal Network Management server that communicates with an external NMT master. One device in a network, generally the host, may act as the NMT master.

Through NMT messages, each CANOpen device's network management server controls state changes within its built-in **Communication State Machine**.

This is independent from each node's operational state machine, which is device dependent and described in [Control State Machine](#).

The “**Communication State Machine**” in all CanOpen devices, however, is identical as specified by the DS301. NMT messages have the highest priority. The 5 NMT messages that control the **Communication State Machine** each contain 2 data bytes that identify the node number and a command to that node’s state machine.

Table 1 shows the 5 NMT messages supported, and Table 2 shows the correct message construction for sending these messages.

| NMT Message           | COB-ID | Data Bytes 1 | Data Bytes 2 |
|-----------------------|--------|--------------|--------------|
| Start Remote Node     | 0      | 01h          | Node-ID*     |
| Stop Remote Node      | 0      | 02h          | Node-ID*     |
| Pre-operational State | 0      | 80h          | Node-ID*     |
| Reset Node            | 0      | 81h          | Node-ID*     |
| Reset Communication   | 0      | 82h          | Node-ID*     |

Table 1 NMT messages supported

\* Node-ID = Drive address (from 01h to 7Fh)

| Arbitration Field |     | Data Field  |         |                |        |        |        |        |        |
|-------------------|-----|-------------|---------|----------------|--------|--------|--------|--------|--------|
| COB-ID            | RTR | Byte 1      | Byte 2  | Byte 3         | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
| 000h              | 0   | See Table 1 | Node-ID | Bytes not sent |        |        |        |        |        |

Table 2. NMT message construction

## 5. BAUD RATE

Baud rate can be configurable via SDO communication object 0x3000 (see communication examples at the end of this document).

**The default Baud rate is 250 kbit/s.**

### **Important Note:**

Changing this parameter can disturb the network! Only change this setting if a single device is connected to the network!

## 6. NODE-ID

Node ID can be configurable via SDO communication object 0x3001 (see communication examples at the end of this document).

The default Node-ID can vary depending on the version, as follows:

- Single version 0x13 (channel 1)
- Redundant version 0x13 (channel 1)  
0x14 (channel 2)

### **Important Note:**

Changing this parameter can disturb the network! Only change this setting if a single device is connected to the network!

## 7. PARAMETER SETTING

All object dictionary parameters (objects with marking PARA) can be saved in a special section of the internal EEPROM and secured by checksum calculation. The special LSS parameters (objects with marking LSS-PARA), also part of the object dictionary, will be also saved in a special section of the internal EEPROM and secured by checksum calculation. Due to the internal architecture of the microcontroller the parameter write cycles are limited to 100,000 cycles.

## 8. HEARTBEAT

The heartbeat mechanism for this device is established through cyclic transmission of the heartbeat message done by the heartbeat producer. One or more devices in the network are aware of this heartbeat message. If the heartbeat cycle fails from the heartbeat producer, the local application on the heartbeat consumer will be informed about that event. The implementation of either guarding or heartbeat is mandatory.

The device supports **Heartbeat Producer** functionality.

### Heartbeat Message:

| COB-ID      | Byte    | 0         |
|-------------|---------|-----------|
| 700+Node-ID | Content | NMT State |

## 9. ERROR HANDLING

### Alarm

PDO has 2 bytes that indicate the alarm, if present.

The bytes are mapped as in the table below.

|        | BIT 7 | BIT 6 | BIT 5                | BIT 4                 | BIT 3 | BIT 2                      | BIT 1                           | BIT 0 |
|--------|-------|-------|----------------------|-----------------------|-------|----------------------------|---------------------------------|-------|
| BYTE 1 | -     | -     | Magnet field too low | Magnet field too high | -     | Over extension alarm       | Under extension alarm           | -     |
| BYTE 2 | -     | -     | -                    | -                     | -     | Tilt primary element alarm | Extension primary element alarm | -     |

## 10. SDO COMMUNICATION AND READ/WRITE COMMANDS

The device fulfils the **SDO Server** functionality.

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

### Write Access, Data Transfer from Host to Slave

Each access to the object dictionary is checked by the slave for validity. Any write access to non-existing objects, to read-only objects or with a non-corresponding data format are rejected and answered with a corresponding error message.

*Structure of SDO-request by the Master:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 600+Node-ID | 8   | CMD    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**CMD** field determines the direction of data transfer and the size of the data object:

23h Sending of 4-byte data (bytes 5...8 contain a 32-bit value)

2Bh Sending of 2-byte data (bytes 5, 6 contain a 16-bit value)

2Fh Sending of 1-byte data (byte 5 contains an 8-bit value)

*Structure of SDO-answer by the Slave:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 580+Node-ID | 8   | RES    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**RES** field determines the correct/incorrect answer of the slave:

60h Data sent successfully

80h Error

## Read Access, Data Transfer from Slave to Host

Each access to the object dictionary is checked by the slave for validity. Any read access to non-existing objects or to write-only are rejected and answered with a corresponding error message.

### Structure of SDO-request by the Master:

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 600+Node-ID | 8   | CMD    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**CMD** field determines the direction of data transfer for any size of the data object:

40h Read access of data (1-, 2- or 4-byte)

### Structure of SDO-answer by the Slave:

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 580+Node-ID | 8   | RES    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**RES** field determines the answer of the slave:

43h Sending of 4-byte data (bytes 5...8 contain a 32-bit value)

4Bh Sending of 2-byte data (bytes 5, 6 contain a 16-bit value)

4Fh Sending of 1-byte data (Byte 5 contains an 8-bit value)

80h Error

## 11. PDO COMMUNICATION

### Transmit PDO #0 – Length and angle calculation GSH-A

The PDO transmits the measurements, in particular:

- Single version, one PDO is transmitted containing length measurement, angle measurement and alarms.
- Redundant version, one PDO is transmitted for each channel. PDO #0 containing length measurement, angle measurement and alarms of channel 1 and PDO #1 containing length measurement, angle measurement and alarms of channel 2.

The PDOs shall be transmitted cyclically, the cyclic timer has default value equal to 50ms. However, cyclic timer of PDOs is programmable through object 0x1800 sub-index5 (and 0x1801 sub-index5, for redundant version). Values between 4ms and 65535ms shall be selectable by parameter settings.

The PDO #0 (and PDO #1, for redundant version) will be transmitted by entering the “Operational” state.

### Single version, structure of PDO:

Byte 1 and 2 contain the length measurement of channel 1, unsigned integer 16-bit value with forward direction.

Byte 3 and 4 contain the angle measurement of channel 1, unsigned integer 16-bit value with forward direction.

| Byte1                              | Byte2                              | Byte3                           | Byte4                           | Byte5, Byte6 | Byte7   | Byte8    |
|------------------------------------|------------------------------------|---------------------------------|---------------------------------|--------------|---------|----------|
| Position value<br>Channel 1<br>LSB | Position value<br>Channel 1<br>MSB | Angle value<br>Channel 1<br>LSB | Angle value<br>Channel 1<br>MSB | Alarm        | Counter | Checksum |

Table 3. Structure of PDO, single version

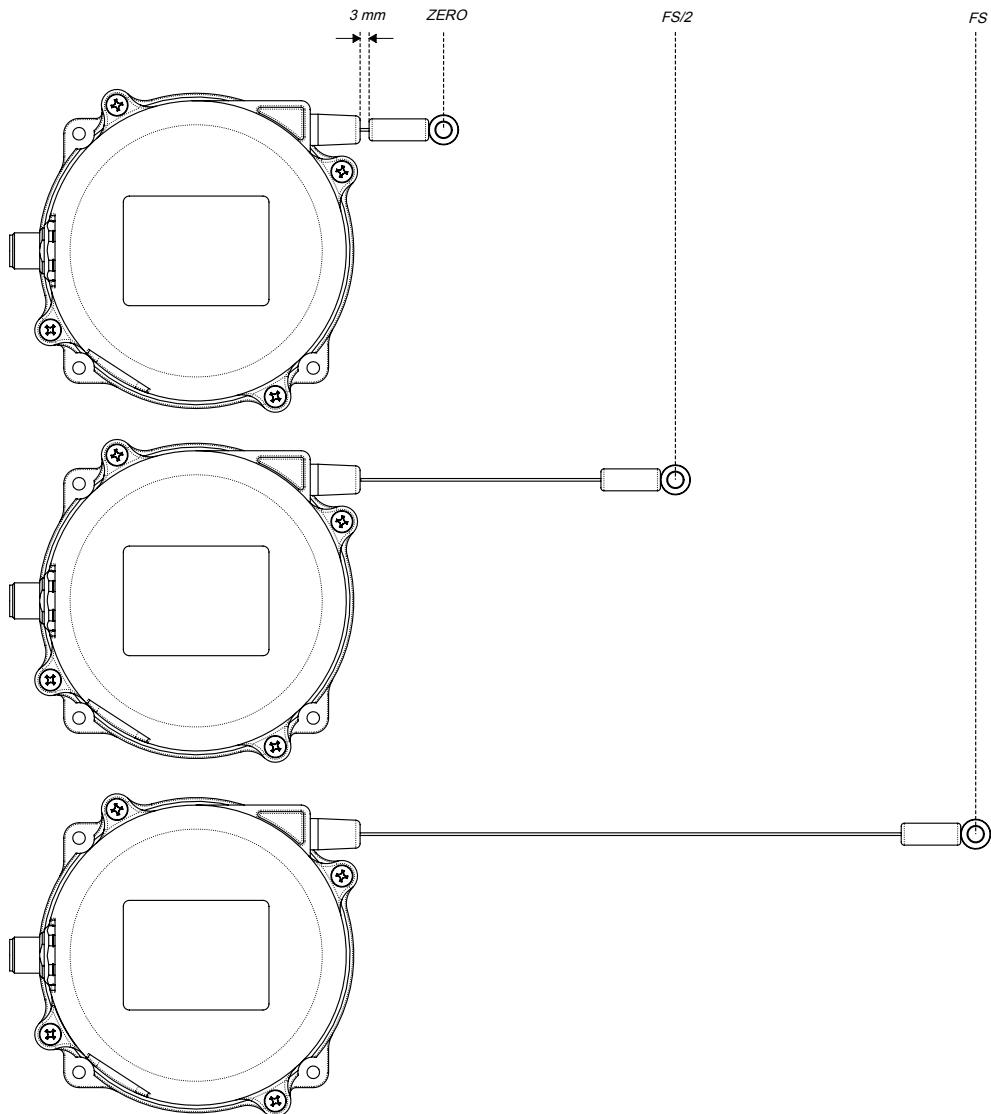
**Redundant version, structure of PDO:**

Byte 1 and 2 contain the length measurement of channel 1, unsigned integer 16-bit value with forward direction.

Byte 3 and 4 contain the angle measurement of channel 1, unsigned integer 16-bit value with forward direction.

| <b>Byte1</b>                       | <b>Byte2</b>                       | <b>Byte3</b>                    | <b>Byte4</b>                    | <b>Byte5, Byte6</b> | <b>Byte7</b> | <b>Byte8</b> |
|------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------|--------------|--------------|
| Position value<br>Channel 1<br>LSB | Position value<br>Channel 1<br>MSB | Angle value<br>Channel 1<br>LSB | Angle value<br>Channel 1<br>MSB | Alarm               | Counter      | Checksum     |

Table 4. Structure of PDO channel 1 (default ID: 0x193), redundant version


Byte 1 and 2 contain the length measurement of channel 2, unsigned integer 16-bit value with backward direction.

Byte 3 and 4 contain the angle measurement of channel 2, unsigned integer 16-bit value with backward direction.

| <b>Byte1</b>                       | <b>Byte2</b>                       | <b>Byte3</b>                    | <b>Byte4</b>                    | <b>Byte5, Byte6</b> | <b>Byte7</b> | <b>Byte8</b> |
|------------------------------------|------------------------------------|---------------------------------|---------------------------------|---------------------|--------------|--------------|
| Position value<br>Channel 2<br>LSB | Position value<br>Channel 2<br>MSB | Angle value<br>Channel 2<br>LSB | Angle value<br>Channel 2<br>MSB | Alarm               | Counter      | Checksum     |

Table 5. Structure of PDO channel 2 (default ID: 0x194), redundant version

The PDO transmits the measurements, in particular:



|            | <b>FIGURE 1</b> | <b>FIGURE 2</b> | <b>FIGURE 3</b> |
|------------|-----------------|-----------------|-----------------|
| <b>CH1</b> | 0 deg           | 330 deg         | 45 deg          |
| <b>CH2</b> | 0 deg           | 30 deg          | 315 deg         |
|            |                 |                 |                 |

## PDO EXAMPLES (REDUNDANT VERSION)

Please, consider that a redundant GSH-A is a sensor with two independent channels, each of them producing a measurement and transmitting it through PDO communication. Channel 1 and 2 can be considered as two independent sensors, each of them with his Node-ID.

An example of a PDO is shown below with the following parameters:

- Node-ID = 13h for channel 1, 14h for channel 2
- Baud-rate = 250 kBaud
- Redundant version GSH-A
- Linear-encoder Cia406 setting as follow:
  - I. Position Value (object 0x6004) indicates the length measurement
  - II. Position Step (object 0x6005) = 1 mm (1 000 000 steps x 1 nm)
- Inclinometer Cia410 setting as follow:
  - III. Resolution (object 0x6800) = 0.1 deg (100 steps x 0.001 deg)
  - IV. Slope long 16 (object 0x6810) indicates the slope value in degrees

### • PDO channel #1 mapping:

| ID   | Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte8 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| 193h | 34h   | 00h   | 22h   | 00h   | 00h   | 00h   | 04h   | 59h   |

- Byte 1 (LSB) = 34h

- Byte 2 (MSB) = 00h

**Position channel 1: 0034h = 52d. Resolution = 1 mm. Value: 52 mm.**

- Byte 3 (LSB) = 22h

- Byte 4 (MSB) = 00h

**Angle channel 1: 0022h = 34d. Resolution = 0,1 deg. Value: 3,4 deg.**

### • PDO channel #2 mapping:

| ID   | Byte1 | Byte2 | Byte3 | Byte4 | Byte5 | Byte6 | Byte7 | Byte8 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| 194h | 26h   | 1Fh   | E6h   | 0Dh   | 00h   | 00h   | 04h   | 3Ch   |

Byte 1 (LSB) = 26h

Byte 2 (MSB) = 1Fh

**Position channel 2: 1F26h = 7974d. Resolution = 1 mm. Value: 7974 mm.**

Byte 3 (LSB) = E6h

Byte 4 (MSB) = 0Dh

**Angle channel 2: 0DE6h = 3558d. Resolution = 0,1 deg. Value: 355,8 deg.**

## 12. CANOPEN FEATURES SUMMARY

### Communication profile

The parameters which are critical for communication are determined in the Communication profile. This area is common for all CanOpen devices.

| Index  | Sub-index | Name                              | Type       | ACCESS | DEFAULT         | COMMENT                                                                                                                            |
|--------|-----------|-----------------------------------|------------|--------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0x1000 |           | Device Type                       | Unsigned32 | ro     | 0xFFFF0196      | Multiple logical device with ds406 device profile as the first logical device                                                      |
| 0x1001 |           | Error Register                    | Unsigned8  | ro     | 0x00            | Always 0.                                                                                                                          |
| 0x1005 |           | COB-ID SYNC                       | Unsigned32 | rw     | 0x00000080      |                                                                                                                                    |
| 0x1008 |           | Manufacturer Device Name          | String     | const  | “GSHA”          | Refer to GEFTRAN products catalogue: GSH-A                                                                                         |
| 0x1009 |           | Manufacturer Hardware Version     | String     | const  | “1.xx”          | “Maj.MinMin”                                                                                                                       |
| 0x100A |           | Manufacturer Software Version     | String     | const  | “1.xx”          | “Maj.MinMin”                                                                                                                       |
| 0x1010 |           | Store Parameters                  |            |        |                 |                                                                                                                                    |
|        | 0x0       | Number of Entries                 | Unsigned8  | ro     | 4               |                                                                                                                                    |
|        | 0x1       | Save all Parameters               | Unsigned32 | wo     |                 | “save” (0x65766173) to save all parameters                                                                                         |
| 0x1018 |           | Identity Object                   |            |        |                 |                                                                                                                                    |
|        | 0x0       | Number of Entries                 | Unsigned8  | ro     | 4               |                                                                                                                                    |
|        | 0x1       | Vendor ID                         | Unsigned32 | ro     | 0x00000093      | Refer to “Gefran Product Overview CANopen”.<br>Gefran Vendor ID: 0x00000093                                                        |
|        | 0x2       | Product Code                      | Unsigned32 | ro     | 0x00000067      | Refer to “Gefran Product Overview CANopen”.                                                                                        |
|        | 0x3       | Revision Number                   | Unsigned32 | ro     | 0x00000001      | Revision number                                                                                                                    |
|        | 0x4       | Serial Number                     | Unsigned32 | ro     | -               | Serial number (Indicated on sensor label)                                                                                          |
| 0x1200 |           | SDO #0 Server Parameter           |            |        |                 |                                                                                                                                    |
|        | 0x0       | Number of Entries                 | Unsigned8  | ro     | 2               |                                                                                                                                    |
|        | 0x1       | COB-ID Client to Server           | Unsigned32 | ro     | 0x600 + Node-ID |                                                                                                                                    |
|        | 0x2       | COB-ID Server to Client           | Unsigned32 | ro     | 0x580 + Node-ID |                                                                                                                                    |
| 0x1800 |           | Tx PDO #0 Communication Parameter |            |        |                 |                                                                                                                                    |
|        | 0x0       | Number of Entries                 | Unsigned8  | ro     | 5               |                                                                                                                                    |
|        | 0x1       | COB-ID                            | Unsigned32 | ro     | 0x180 + Node-ID |                                                                                                                                    |
|        | 0x2       | Transmission Type                 | Unsigned8  | ro     | 254             | 1..240: Synchronous Transmission<br>254: Asynchronous transmission, transmission event is manufacturer specific, i.e. event timer. |
|        | 0x3       | Inhibit Time                      | Unsigned16 | ro     | 0x0004          | Minimum interval time for PDO #0                                                                                                   |
|        | 0x4       | Reserved                          | Unsigned8  | ro     | 0               |                                                                                                                                    |
|        | 0x5       | Event Timer - PARA                | Unsigned16 | rw     | 100             | In the EDS file this default value must be set to 0, otherwise errors will be generated.                                           |
| 0x1A00 |           | Tx PDO #0 Mapping Parameter       |            |        |                 |                                                                                                                                    |

| Index | Sub-index | Name              | Type       | ACCESS | DEFAULT    | COMMENT                                    |
|-------|-----------|-------------------|------------|--------|------------|--------------------------------------------|
|       | 0x0       | Number of Entries | Unsigned8  | ro     | 2          |                                            |
|       | 0x1       | 1st Object        | Unsigned16 | ro     | 0x60040010 | PDO mapping for the 1st application object |
|       | 0x2       | 2nd Object        | Unsigned16 | ro     | 0x68100010 | PDO mapping for the 2nd application object |

**Note:** The access to CanOpen variables can be ro (the parameter can be read only), rw (the parameter can be read and also written), wo (the parameter can be written only) or const (the parameter is always constant).

### **Manufacturer Specific Profile Objects**

| Index  | Sub-index | Name                                      | Type | ACCESS | DEFAULT | COMMENT                                                                                                                                                                       |
|--------|-----------|-------------------------------------------|------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x3000 |           | Setting of the Baud Rate                  | U8   | rw     | 0x03    | Baud rate of the CAN network<br>0 = 1000 kBaud<br>1 = 800 kBaud<br>2 = 500 kBaud<br>3 = 250 kBaud (default)<br>4 = 125 kBaud<br>5 = 100 kBaud<br>6 = 50 kBaud<br>7 = 20 kBaud |
| 0x3001 |           | Setting of the Node ID                    | U8   | rw     | 0x13    | The node ID used to access the sensor in the CANopen network                                                                                                                  |
| 0x5000 |           | Automatic NMT Start after Power On – PARA | U8   | rw     | 1       | 0: not activated<br>1: activated                                                                                                                                              |

**Note:** The access to CanOpen variables can be ro (the parameter can be read only), rw (the parameter can be read and also written), wo (the parameter can be written only) or const (the parameter is always constant).

## Manufacturer Specific Profile Objects (according to CiA DS-406 and CiA DS-410)

| Index  | Sub-index | Name                               | Type       | ACCESS | DEFAULT    | COMMENT                                                                                                  |
|--------|-----------|------------------------------------|------------|--------|------------|----------------------------------------------------------------------------------------------------------|
| 0x6000 |           | Operating Parameters – PARA        | Unsigned16 | ro     | 0x0000     |                                                                                                          |
| 0x6004 |           | Position Value                     | Unsigned32 | ro     | -          | The object 6004h „Position value“ defines the output position value for the communication objects 1800h. |
| 0x6005 |           | Position step settings [nm/Step]   | Unsigned32 | ro     | 0x000F4240 | Position step setting in nm.<br>- 1000000 for millimeter                                                 |
| 0x67FF |           | Device Type                        | Unsigned32 | ro     | 0x000A0196 | Multi-sensor encoder interface with DS-406 device profile                                                |
| 0x6800 |           | Resolution                         | Unsigned16 | ro     | 0x0064     | Tilt step setting in 0.001 deg.<br>- 100 for 0.1 deg;                                                    |
| 0x6810 |           | Slope long 16                      | Unsigned16 | ro     | -          | Slope value of the longitudinal axis                                                                     |
| 0x6811 |           | Slope long 16 operating parameters | Unsigned8  | ro     | 0x00       |                                                                                                          |
| 0x6FFF |           | Device Type                        | Unsigned32 | ro     | 0x0002019A | Multi-sensor encoder interface with DS-410 device profile                                                |

**Note:** The access to CanOpen variables can be ro (the parameter can be read only), rw (the parameter can be read and also written), wo (the parameter can be written only) or const (the parameter is always constant).

### 13. COMMUNICATION EXAMPLES

#### **Example 1) How to change the Node-ID from 0x13 (19d) to 0x06 (06d)**

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

*Structure of SDO-request by the Master:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 600+Node-ID | 8   | CMD    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**CMD** field determines the direction of data transfer and the size of the data object:

- 23h Sending of 4-byte data (bytes 5...8 contain a 32-bit value)
- 2Bh Sending of 2-byte data (bytes 5, 6 contain a 16-bit value)
- 2Fh Sending of 1-byte data (byte 5 contains an 8-bit value)

Each access to the object dictionary is checked by the slave for validity. Any write access to non-existing objects, to read-only objects or with a non-corresponding data format are rejected and answered with a corresponding error message.

*Structure of SDO-answer by the Slave:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 580+Node-ID | 8   | RES    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**RES** field determines the correct/incorrect answer of the slave:

- 60h Data sent successfully
- 80h Error

To change the Node-ID from the standard value 13h to 06h, write the new Node-ID in the object 3001h by using the following SDO message. Then send the Save all parameters SDO and perform a sensor reset.

*SDO request 1:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 613h   | 8   | 2Fh    | 01h    | 30h    | 00h    | 06h    | 00h    | 00h    | 00h    |

The answer after successful storing you will receive is:

*SDO answer 1:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 593h   | 8   | 60     | 01h    | 30h    | 00h    | 00h    | 00h    | 00h    | 00h    |

In order to save all new customized parameters, send the following SDO message. Then, turn-off and turn-on the power supply to perform the reset

*SDO request 2 (SAVE):*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 67F    | 8   | 23h    | 10h    | 10h    | 01h    | 73h    | 61h    | 76h    | 65h    |

The answer after successful storing you will receive is: answer 2:

*SDO answer 2:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 593h   | 8   | 60h    | 10h    | 10h    | 01h    | 00h    | 00h    | 00h    | 00h    |

## ***Example 2) How to change the PDO rate (time interval) from 100 ms (current setting) to 1000 ms***

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

*Structure of SDO-request by the Master:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 600+Node-ID | 8   | CMD    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**CMD** field determines the direction of data transfer and the size of the data object:

23h Sending of 4-byte data (bytes 5...8 contain a 32-bit value)

2Bh Sending of 2-byte data (bytes 5, 6 contain a 16-bit value)

2Fh Sending of 1-byte data (byte 5 contains an 8-bit value)

Each access to the object dictionary is checked by the slave for validity. Any write access to non-existing objects, to read-only objects or with a non-corresponding data format are rejected and answered with a corresponding error message.

*Structure of SDO-answer by the Slave:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 580+Node-ID | 8   | RES    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**RES** field determines the correct/incorrect answer of the slave:

60h Data sent successfully

80h Error

To change the PDO event timer from the standard 100ms to 1000ms, write the new event timer in the object 1800h sub-index 5 by using the following SDO message. Then send the Save all parameters SDO and perform a sensor reset.

*SDO request 1:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 613h   | 8   | 2Bh    | 00h    | 18h    | 05h    | E8h    | 03h    | 00h    | 00h    |

The answer after successful storing you will receive is:

*SDO answer 1:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 593h   | 8   | 60h    | 00h    | 18h    | 05h    | 00h    | 00h    | 00h    | 00h    |

In order to save all new customized parameters, send the following SDO message. Then, turn-off and turn-on the power supply to perform the reset

*SDO request 2 (SAVE):*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 613h   | 8   | 23h    | 10h    | 10h    | 01h    | 73h    | 61h    | 76h    | 65h    |

The answer after successful storing you will receive is:

*SDO answer 2:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 593h   | 8   | 60h    | 10h    | 10h    | 01h    | 00h    | 00h    | 00h    | 00h    |

**Example 3) How to de-activate an automatic NMT Start after Power ON (the PDO will not be sent automatically after power ON)**

With Service Data Object (S.D.O.) the access to entries of a device Object Dictionary is provided. As these entries may contain data of arbitrary size and data type SDOs can be used to transfer multiple data sets from a client to a server and vice versa.

*Structure of SDO-request by the Master:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 600+Node-ID | 8   | CMD    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**CMD** field determines the direction of data transfer and the size of the data object:

23h Sending of 4-byte data (bytes 5...8 contain a 32-bit value)

2Bh Sending of 2-byte data (bytes 5, 6 contain a 16-bit value)

2Fh Sending of 1-byte data (byte 5 contains an 8-bit value)

Each access to the object dictionary is checked by the slave for validity. Any write access to non-existing objects, to read-only objects or with a non-corresponding data format are rejected and answered with a corresponding error message.

*Structure of SDO-answer by the Slave:*

| COB-ID      | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4    | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|-------------|-----|--------|--------|--------|-----------|--------|--------|--------|--------|
| 580+Node-ID | 8   | RES    | Index  |        | Sub-Index | Data   | Data   | Data   | Data   |

**RES** field determines the correct/incorrect answer of the slave:

60h Data sent successfully

80h Error

To change the automatic NMT start after power on configuration, write the enable value (0=not activated, 1=activated) in the object 5000h sub-index 0 by using the following SDO message.

Then send the Save all parameters SDO and perform a sensor reset.

*SDO request 1:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 613h   | 8   | 2Fh    | 00h    | 50h    | 00h    | 00h    | 00h    | 00h    | 00h    |

The answer after successful storing you will receive is:

*SDO answer 1:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 593h   | 8   | 60h    | 00h    | 50h    | 00h    | 00h    | 00h    | 00h    | 00h    |

In order to save all new customized parameters, send the following SDO message. Then, turn-off and turn-on the power supply to perform the reset

*SDO request 2 (SAVE):*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 613h   | 8   | 23h    | 10h    | 10h    | 01h    | 73h    | 61h    | 76h    | 65h    |

The answer after successful storing you will receive is:

*SDO answer 2:*

| COB-ID | DLC | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byte 6 | Byte 7 | Byte 8 |
|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|
| 593h   | 8   | 60h    | 10h    | 10h    | 01h    | 00h    | 00h    | 00h    | 00h    |

**GEFRAN**

**GEFRAN spa**

via Sebina, 74 - 25050 PROVAGLIO D'ISEO (BS) - ITALIA  
tel. 0309888.1 - fax. 0309839063 Internet: <http://www.gefran.com>