

**INSTALLATION AND
OPERATION MANUAL**Software Version: **1.0x**Code: **80403B** / Edition **02 - 01-2021 ENG****INDEX**

1	Introduction	2
2	Features	2
3	Dip-switch function	2
4	Setup PC Connection	4
5	Test Board Connection Using PING Command	8
6	Connect the Board to Your LAN	8
7	GFX4-ETH's Modbus TCP/IP implemented command	9

1 • Introduction

The GFX4-ETH module is IEEE 802.3 compliant supporting Ethernet operation for MODBUS TCP/IP communication architecture.

2 • Features

- IEEE 802.3 compliant
- Full-duplex and half-duplex modes
- Capable of supporting both 10 Mbps and 100 Mbps data rates
- Single RJ45 connection with leds indicator (yellow = link , green = activity)
- One socket available
- All MODBUS/TCP ADU are sent via TCP on registered port 502
- Default address: 192.168.1.100
- Subnet mask: 255.255.255.0
- Default gateway: 192.168.1.1

3 • Dip-switch Function

On the GFX4-ETH card there are two Dip-switches for the following functions

Dip-switch 1 : reset of the default parameters

Dip-switch 2 : baud-rate selection

3.1 Resetting Parameters to Factory Defaults

At any moment, all of the GFX4-ETH board parameters can be restored to the factory default settings.

To do so:

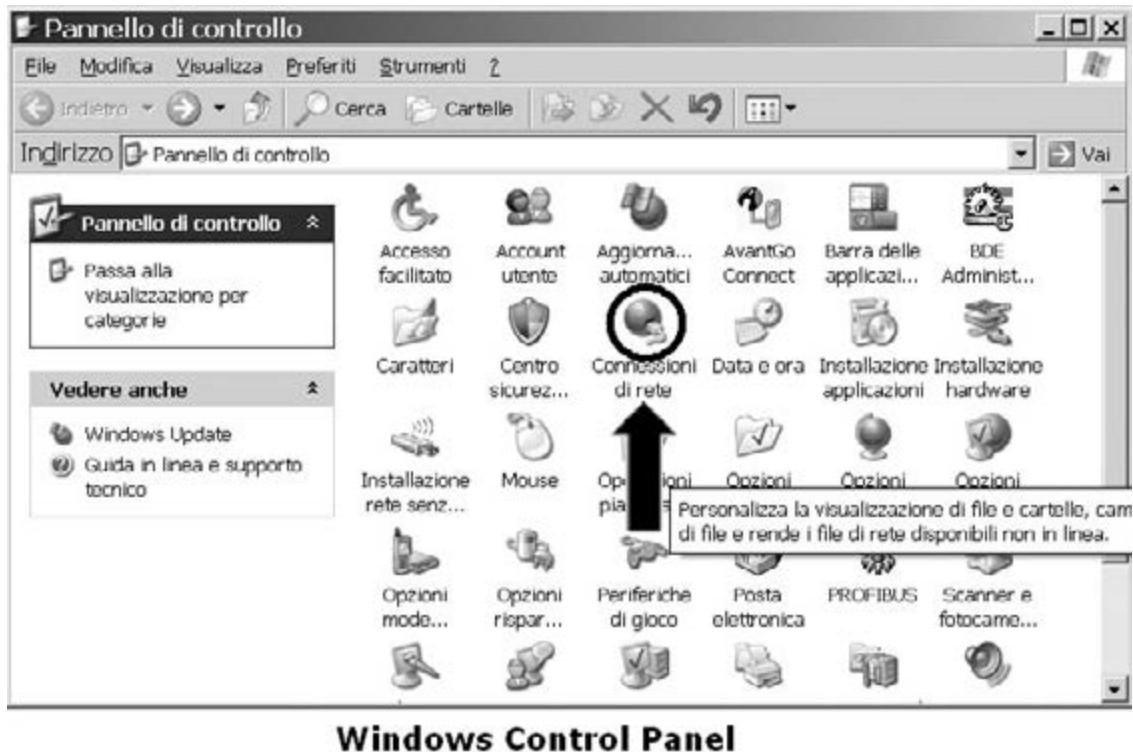
1. Set Dip Switch S1 dip 1 = ON (located near RJ45 connector)
2. Restart GFX4-ETH board
3. Set Dip Switch S1 dip 1 = OFF

3.2 Selecting the Baud rate

Select the baud rate (10Mbit/s or 100Mbit/s) with Dip-switch 2.

1. Setting Dip-switch 2 = ON for 10Mbit/s
 Dip-switch 2 = OFF for 100 Mbit/s (default)
2. Reboot the board

Note: if used on PC-compatible systems, it is advisable to supply the table of ARP addresses


Ex.: ARP-D control

In other systems (PLC) not equipped with this control, it is advisable to switch off and then on.

All the information in this quick guide require that the GFX4-ETH communicates with the host PC through a LAN connection.

In this pages you'll learn how to configure the PC to communicate with the GFX4-ETH using an Ethernet cross cable or hub/switch. The following steps are based on a Windows XP system.

1. Open the Windows Control Panel and open the Network. Connections item:

2. If a Local Area Connection is already available, go to step 8.

Otherwise, run the “New Connection” wizard.

3. The following dialog box will appear. Click Next.

New Connection Wizard, Step 1

4. On the next dialog box, select the “Connect to the Internet” option and click the “Next” button.

New Connection Wizard, Step 2

5. On the next dialog box, select the “Set up my connection manually” option and click the “Next” button.

New Connection Wizard, Step 3

6. On the next dialog box, select the “Connect using a broadband connection that is always on” option and click the “Next” button.

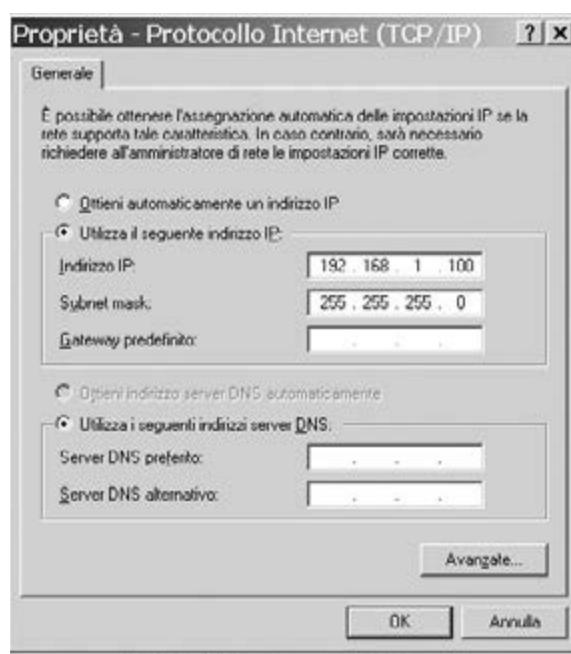
New Connection Wizard, Step 4

7. When the last dialog box appears, click the “Finish” button.

New Connection Wizard, Step 5

8. Open the newly created connection (or the existing connection if you are coming from step 2) and click the “Properties” button.

9. Select the “Internet Protocol (TCP/IP)” item and click the “Properties” button.

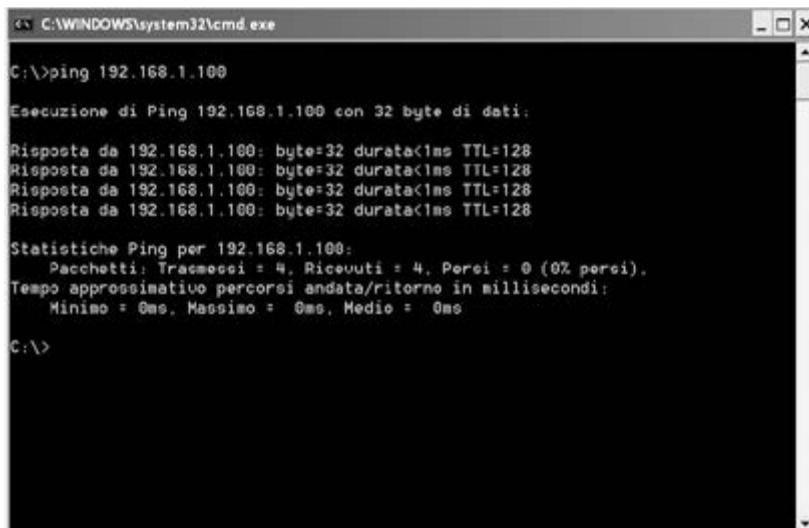


Local Area Connection Status

10. If you have started from an existing connection, write down all of the TCP/IP parameters. You'll need them later to restore your LAN settings to the original parameters.

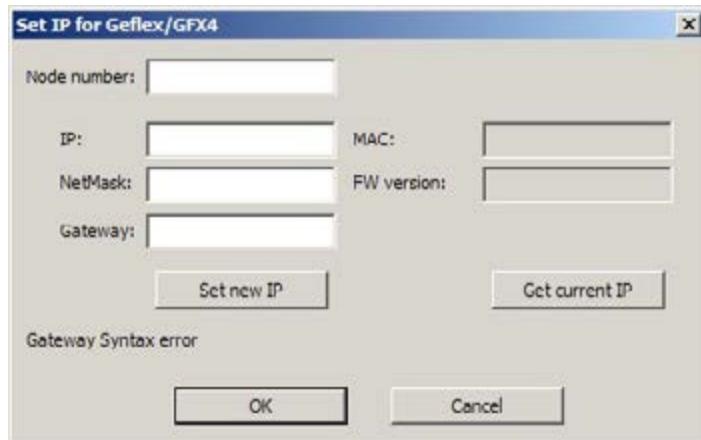
11. Select the manual settings and type in the following values:

IP address: 192.168.1.101
Subnet mask: 255.255.255.0



TCP/IP properties

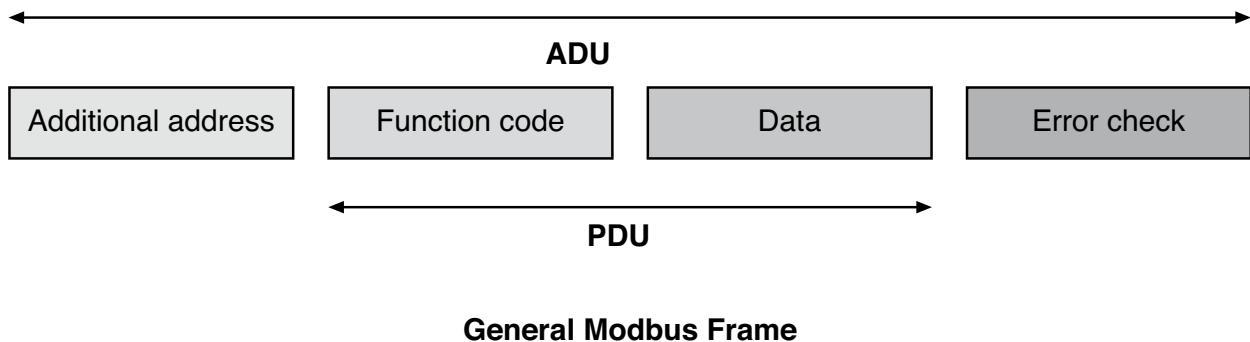
Click the “OK” button on all LAN setup dialog boxes.


5 • Test Board Connection Using PING Command

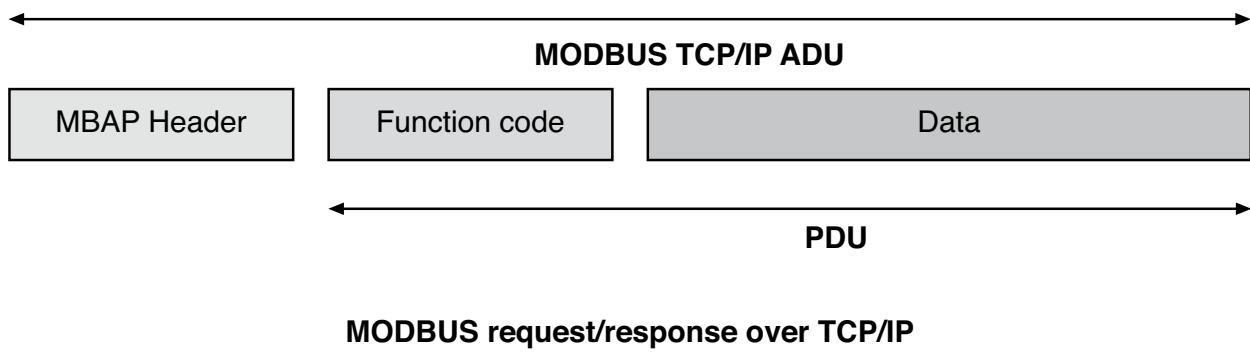
1. Power up the board and verify the POWER led turn on.
2. Connect the GFX4-ETH to the PC through an Ethernet cross cable or hub / switch.
3. Open a Command Prompt window (on Windows XP, from the Windows Start menu, select Run, enter CMD and click the “OK” button).
4. At the command prompt, type: PING 192.168.1.100
5. If the connection has been properly setup, the PING command will return a positive feedback.

6 • Connect the Board to Your LAN

Before connecting the GFX4-ETH board to your LAN, the IP address must be changed to match the LAN settings. To change the GFX4-ETH's IP address, do the following.



1. With the GFX4-ETH still connected to the PC via the Ethernet cross cable or hub /switch, launch the **SetIp_for_Geflex/GFX4** (see GF_eXpress documentation) utility that is located in the CD-ROM.
2. To set up the Node field number so that or in compliance with the real value of the rotary of card GFX4-ETH.
3. Press the **Get current IP** button. You can see actual IP address , subnet mask , default gateway and MAC address.
4. Set your parameter and after click on **Set new IP** button.
5. Restart the GFX4-ETH board.
6. Goto to step 2 if you want to see new parameter.


7 • GFX4-ETH's Modbus TCP/IP implemented command

- 01 (0x01) Read Coils
- 02 (0x02) Read Discrete Inputs
- 03 (0x03) Read Holding Registers
- 04 (0x04) Read Input Registers
- 05 (0x05) Write Single Coil
- 06 (0x06) Write Single Register
- 15 (0x0F) Write Multiple Coils
- 16 (0x10) Write Multiple registers

The MODBUS protocol defines a simple Protocol Data Unit (PDU) independent of the underlying communication layers. The mapping of MODBUS protocol on specific buses or networks can introduce some additional fields on the Application Data Unit (ADU).

The client that initiates a MODBUS transaction builds the MODBUS Application Data Unit. The function code indicates to the server which kind of action to perform.

A dedicated header is used on TCP/IP to identify the MODBUS Application Data Unit. It is called the MBAP header (MODBUS Application Protocol header).

This header provides some differences compared to the MODBUS RTU application data unit used on serial line: the MODBUS 'slave address' field usually used on MODBUS Serial Line is replaced by a single byte 'Unit Identifier' within the MBAP Header.

The 'Unit Identifier' is used to communicate via devices such as bridges, routers and gateways that use a single IP address to support multiple independent MODBUS end units.

All MODBUS requests and responses are designed in such a way that the recipient can verify that a message is finished.

For function codes where the MODBUS PDU has a fixed length, the function code alone is sufficient.

For function codes carrying a variable amount of data in the request or response, the data field includes a byte count.

When MODBUS is carried over TCP, additional length information is carried in the MBAP header to allow the recipient to recognize message boundaries even if the message has been split into multiple packets for transmission.

The existence of explicit and implicit length rules, and use of a CRC-32 error check code (on Ethernet) results in an infinitesimal chance of undetected corruption to a request or response message.

The MBAP Header contains the following fields:

Fields	Length	Description	Client	Server
Transaction Identifier	2 Bytes	Identification of a MODBUS Request / Response transaction	Initialized by the client	Recopied by the server from the received request
Protocol Identifier	2 Bytes	0 = MODBUS protocol	Initialized by the client	Recopied by the server from the received request
Length	2 Bytes	Number of following bytes	Initialized by the client (request)	Initialized by the server (Response)
Unit Identifier	1 Byte	Identification of a remote slave connected on a serial line or on other buses	Initialized by the client	Recopied by the server from the received request

The header is 7 bytes long:

- 1. Transaction Identifier** - It is used for transaction pairing the MODBUS server copies in the response the transaction identifier of the request.
- 2. Protocol Identifier** - It is used for intra-system multiplexing. The MODBUS protocol is identified by the value 0.
- 3. Length** - The length field is a byte count of the following fields, including the Unit Identifier and data fields.
- 4. Unit Identifier (Rotary switch value see Geflex Software Manual)** - This field is used for intra-system routing purpose. It is typically used to communicate to a MODBUS serial line slave through a gateway between an Ethernet TCP-IP network and a MODBUS serial line. This field is set by the MODBUS Client in the request and must be returned with the same value in the response by the server.

Serial communication time constraints in Modbus RTU

The following time constraints must be complied with in order to allow correct serial data exchange with the device:

Reading Word/Register parameters: Reading N consecutive parameters, with N from 1 to 16, requires a time of almost 50 ms. In this case the following read and write Modbus command, to the same node, must be sent after this interval time.

Writing Word/Register parameters: Writing N consecutive parameters, with N ranging from 1 to 16, if all values (maximum 16) on the device are updated, will take a time of: 50ms + N x 80ms(*) with N from 1 to 16.

The times reported refer to the case in which the Baudrate of the serial line (parameter bAu Modbus address 45) is 19200.

(*) If STATUS_W parameters (Modbus address 305) are included in the write request and their value is different from the one currently present in the slave, the time required to write each one will be 240ms (instead of 80ms).

GEFRAN spa

via Sebina 74 25050 Provaglio d'Iseo (BS) Italy
Tel. +39 030 9888.1 Fax +39 030 9839063 - info@gefran.com - <http://www.gefran.com>